Журналов:     Статей:        

Вопросы вирусологии. 2018; 63: 53-57

ОСПА БЕЛОК (POXVIRIDAE, CHORDOPOXVIRINAE, SQPV - SQUIRREL POXVIRUS)

Борисевич С. В., Стовба Л. Ф., Павельев Д. И.

https://doi.org/10.18821/0507-4088-2018-63-2-53-57

Аннотация

Впервые в отечественной литературе рассмотрен новый таксон в подсемействе Chordopoxvirinae, который, возможно, представляет собой новый род оспенных вирусов. Описаны эпизоотологические проявления оспы белок у североамериканских серых и европейских рыжих белок. Расселение серых белок (Sciurus carolinensis) по Великобритании на протяжении ХХ столетия и снижение численности популяции рыжих белок (Sciurus vulgaris) относятся к наиболее известным документальным подтверждениям экологической смены местной фауны интродуцированным видом. Отмечена тенденция к расширению ареала распространения вируса оспы белок из Великобритании на западную часть Европы. В обзоре отдельно изложены генетические особенности генома вируса оспы белок, определяющие его биологические свойства, а также эволюционные взаимосвязи с другими поксвирусами. Определение величины генома с помощью рестриктного анализа, секвенирование всего генома, определение содержания Г/Ц-нуклеотидных пар и функциональное картирование большей части генов позволили построить филогенетическое древо. Филогенетический анализ показал, что это новый представитель подсемейства Chordоpoxvirinae, расположенный между вирусами контагиозного моллюска и парапоксвирусами. Для выявления и идентификации возбудителя оспы белок используются серологические и молекулярно-биологические методы. Применение электронной микроскопии ограничено у серых белок вследствие отсутствия поражения органов и репродукции вируса. Идентификация ДНК возбудителя оспы белок, основанная на использовании разных видов полимеразной цепной реакции (гнездовой и в реальном времени) преодолевает все эти ограничения.
Список литературы

1. Thomas K., Tompkins D.M., Sainsbury A.W., Wood A.R., Dalziel R., Nettleton P.F., Mclnnes C.J. A novel poxvirus lethal to red squirrel (Sciurus vulgaris). J. Gen. Virol. 2003; 84(Pt. 12): 3337-41.

2. Mclnnes C.J., Wood A.R., Thomas K., Sainsbury A.W., Furnell J., Dein F.J., et al. Genomic characterization of a novel poxvirus contributing to the decline of the red squirrel (Scuirus vulgaris) in the UK. J. Gen. Virol. 2006; 87(Pt. 8): 2115-25.

3. Львов Д.К., Альховский С.В., Щелканов М.Ю. Поксвирусы (Poxviridae). В кн.: Львов Д.К., ред. Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. М.: МИА; 2013: 179-85

4. Sainsbury A.W., Nettleton P.F., Gilray J., Gurnell J. Gray squirrel have high seroprevalence to a parapox virus associated with red squirrel. In: Animal Conservation Forum. Cambridge: Cambridge University Press; 2000; 3(3): 229-33.

5. Tompkins D.M., Sainsbury A.W., Nettleton P., Bucston D., Gurnell J. Parapoxvirus causes a deleterious disease in red squirrels associated with UK population declines. Proc. R. Soc. Lond. B. 2002; 269(1490): 529-33.

6. Duff J.P., Scott A., Keymer I.F. Parapox virus infection of the grey squirrels. Vet. Rec. 1996; 138(21): 527.

7. Usher M.B., Crawford T.J., Banwell J.L. An American invasion of Great Britain - the case of the native and alien squirrel (Sciurus) species. Cons. Biol. 1992; 6(1): 108-15.

8. Atkin J.W., Radford A.D., Coyne K.P., Stavisky J., Chantrey J. Detection of squirrel poxvirus by nested and real-time PCR from red (Sciurus vulgaris) and grey (Sciurus carolinensis) squirrels. BMC Vet. Res. 2010; 6: 33-41.

9. Waters C. Post-release monitoring of two translocated red squirrel (Sciurus vulgaris L.) populations: Diss. Galway; 2012.

10. Harris S., Yalden D.W. Mammals of the British Isles: Handbook. London: The Mammal Society; 2008.

11. Lurz P.W.W., White A., Meredith A., McInnes C., Boots M. Living with pox project: Forest management for areas affected by squirrelpox virus. In: Forestry Commission Scotland Report. Edinburgh; 2015.

12. Sainsbury A.W., Gurnell J. An investigation into the health and welfare of red squirrels, Sciurus vulgaris, involved in reintroduction studies. Vet. Rec. 1995; 137(15): 367-70.

13. White A., Lurz P.W.W. A modeling assessment of control strategies to prevent/reduce squirrelpox spread. In: Scottish Natural Heritage Commissioned Report № 627. Inverness; 2014.

14. Chantrey J., Dale T.D., Read J.M., White S., Whitfield F., Jones D., et al. European red squirrels population dynamics driven by squirrelpox at a gray squirrel invasion interface. Ecol. Evol. 2014; 4(19): 3788-99.

15. Naulty F., Everest D., Warnock N.D., Phelan K., Callanan J.J. Squirrelpox virus in red squirrels (Sciurus vulgaris) in the Republic of Ireland. J. Wildlife Dis. 2013; 49(4): 1070-3.

16. Darby A.C., Mcinnes C.J., Kjaer K.H., Wood A.R., Hughes M., Martensen P.M., et al. Novel host-related virulence factors are encoded by squirrelpox virus, the main causative agent of epidemic disease in red squirrels in the UK. Plos One. 2014; 9(7): e96439.

17. Alcami A. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 2003; 3(1): 36-50.

18. Haga I.R., Bowie A.G. Evasion of innate immunity by vaccinia virus. Parasitology. 2005; 130: 11-25.

19. Seet В.Т., Johnston J.B., Brunetti C.R., Barrett J.W., Everett H., Cameron C.M., et al. Poxviruses and immune evasion. Annu. Rev. Immunol. 2003; 21: 377-423.

20. Taylor J.M., Barry M. Near death experiences: poxvirus regulation of apoptotic death. Virology. 2006; 344(1): 139-50.

21. Perdiguero B., Esteban M. The interferon system and vaccinia virus evasion mechanisms. J. Interferon Cytokine Res. 2009; 29(9): 581-98.

22. Garcia M.A., Gil J., Ventoso I., Guerra S., Domingo E., Rivas C., et al. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol. Mol. Biol. Rev. 2006; 70(4): 1032-60.

23. Gil J., Rullas J., Alcam J., Esteban M. MG159L protein from the poxvirus molluscum contagiosum virus inhibits NF-kappaß activation and apoptosis induced by PKR. J. Gen. Virol. 2001; 82(pt. 12): 3027-34.

24. Haller O., Kochs G., Weber F. Interferon, Mx, and viral countermeasures. Cytokine Growth Factor Rev. 2007; 18(5-6): 425-33.

25. Brandt Т.А., Jacobs B.L. Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L, are required for pathogenesis in a mouse model. J. Virol. 2001; 75(2): 850-6.

26. Gardai S.J., Bratton D.L., Ogden G.A., Henson P.M. Recognition ligands on apoptotic cells: a perspective. J. Leukoc. Biol. 2006; 79(5): 896-903.

27. Pettersen R.D. CD47 and death signaling in the immune system. Apoptosis. 2000; 5(4): 299-306.

28. Cameron C.M., Barrett J.W., Mann M., Lucas A., McFadden G. Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the down regulation of macrophage activation in vivo. Virology. 2005; 337(1): 55-67.

29. Himswort C.G., Musil K.M., Bryan L., Hill J.E. Poxvirus infections in an American red squirrel (Tamiasciurus hudsonicus) from northwestern Canada. J. Wildl. Dis. 2009; 45(4): 1143-9.

30. Collins L.M., Warnock N.D., Tosh D.G., Mcinnes C., Everest D., Montgomery W.I., et al. Squirrelpox virus: assessing prevalence, transmission and environmental degradation. Plos One. 2014; 9(2): e89521.

31. McLysaght A., Baldi P.F., Gaut B.S. Extensive gene gain associated with adaptive evolution of poxviruses. Proc. Natl. Acad. Sci. USA. 2003; 100(26): 15655-60.

Problems of Virology. 2018; 63: 53-57

POXVIRUS DISEASE OF SQUIRRELS (POXVIRIDAE, CHORDOPOXVIRINAE, SQPV - SQUIRREL POXVIRUS)

Borisevich S. V., Stovba L. F., Paveliev D. I.

https://doi.org/10.18821/0507-4088-2018-63-2-53-57

Abstract

A new taxon of the subfamily Chordopoxvirinae that may represent a new genus of smallpox viruses is considered in this review. The distribution of gray squirrels (Sciurus carolinensis) throughout the UK during the 20th century and the decrease in the population of red squirrels (Sciurus vulgaris) is one of the most well-documented cases of ecological change of local fauna by the introduced species. The tendency to expand the distribution of the smallpox virus from Great Britain to the Western part of Europe has been noted. The genetic peculiarities of the genome of the poxvirus of squirrels, which determine its biological properties, as well as evolutionary relationships with other poxviruses, are separately described. Determination of the size of the genome by restriction analysis, sequencing of the whole genome, determination of the content of G/C nucleotide pairs, and functional mapping of the majority of genes made it possible to construct a phylogenetic tree. Phylogenetic analysis shows that this is a new representative of the subfamily Chordоpoxvirinae located between the viruses of the molluscum contagiosum and parapoxviruses. Serological and molecular biological methods are used to reveal and identify the causative agent of smallpox. The use of electron microscopy is limited in grey squirrels, due to the absence of organ damage and reproduction of the virus. Identification of the DNA of the causative agent of poxvirus of squirrels based on the use of different types of polymerase chain reaction (nested and in real time) overcomes all these limitations.
References

1. Thomas K., Tompkins D.M., Sainsbury A.W., Wood A.R., Dalziel R., Nettleton P.F., Mclnnes C.J. A novel poxvirus lethal to red squirrel (Sciurus vulgaris). J. Gen. Virol. 2003; 84(Pt. 12): 3337-41.

2. Mclnnes C.J., Wood A.R., Thomas K., Sainsbury A.W., Furnell J., Dein F.J., et al. Genomic characterization of a novel poxvirus contributing to the decline of the red squirrel (Scuirus vulgaris) in the UK. J. Gen. Virol. 2006; 87(Pt. 8): 2115-25.

3. L'vov D.K., Al'khovskii S.V., Shchelkanov M.Yu. Poksvirusy (Poxviridae). V kn.: L'vov D.K., red. Rukovodstvo po virusologii. Virusy i virusnye infektsii cheloveka i zhivotnykh. M.: MIA; 2013: 179-85

4. Sainsbury A.W., Nettleton P.F., Gilray J., Gurnell J. Gray squirrel have high seroprevalence to a parapox virus associated with red squirrel. In: Animal Conservation Forum. Cambridge: Cambridge University Press; 2000; 3(3): 229-33.

5. Tompkins D.M., Sainsbury A.W., Nettleton P., Bucston D., Gurnell J. Parapoxvirus causes a deleterious disease in red squirrels associated with UK population declines. Proc. R. Soc. Lond. B. 2002; 269(1490): 529-33.

6. Duff J.P., Scott A., Keymer I.F. Parapox virus infection of the grey squirrels. Vet. Rec. 1996; 138(21): 527.

7. Usher M.B., Crawford T.J., Banwell J.L. An American invasion of Great Britain - the case of the native and alien squirrel (Sciurus) species. Cons. Biol. 1992; 6(1): 108-15.

8. Atkin J.W., Radford A.D., Coyne K.P., Stavisky J., Chantrey J. Detection of squirrel poxvirus by nested and real-time PCR from red (Sciurus vulgaris) and grey (Sciurus carolinensis) squirrels. BMC Vet. Res. 2010; 6: 33-41.

9. Waters C. Post-release monitoring of two translocated red squirrel (Sciurus vulgaris L.) populations: Diss. Galway; 2012.

10. Harris S., Yalden D.W. Mammals of the British Isles: Handbook. London: The Mammal Society; 2008.

11. Lurz P.W.W., White A., Meredith A., McInnes C., Boots M. Living with pox project: Forest management for areas affected by squirrelpox virus. In: Forestry Commission Scotland Report. Edinburgh; 2015.

12. Sainsbury A.W., Gurnell J. An investigation into the health and welfare of red squirrels, Sciurus vulgaris, involved in reintroduction studies. Vet. Rec. 1995; 137(15): 367-70.

13. White A., Lurz P.W.W. A modeling assessment of control strategies to prevent/reduce squirrelpox spread. In: Scottish Natural Heritage Commissioned Report № 627. Inverness; 2014.

14. Chantrey J., Dale T.D., Read J.M., White S., Whitfield F., Jones D., et al. European red squirrels population dynamics driven by squirrelpox at a gray squirrel invasion interface. Ecol. Evol. 2014; 4(19): 3788-99.

15. Naulty F., Everest D., Warnock N.D., Phelan K., Callanan J.J. Squirrelpox virus in red squirrels (Sciurus vulgaris) in the Republic of Ireland. J. Wildlife Dis. 2013; 49(4): 1070-3.

16. Darby A.C., Mcinnes C.J., Kjaer K.H., Wood A.R., Hughes M., Martensen P.M., et al. Novel host-related virulence factors are encoded by squirrelpox virus, the main causative agent of epidemic disease in red squirrels in the UK. Plos One. 2014; 9(7): e96439.

17. Alcami A. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 2003; 3(1): 36-50.

18. Haga I.R., Bowie A.G. Evasion of innate immunity by vaccinia virus. Parasitology. 2005; 130: 11-25.

19. Seet V.T., Johnston J.B., Brunetti C.R., Barrett J.W., Everett H., Cameron C.M., et al. Poxviruses and immune evasion. Annu. Rev. Immunol. 2003; 21: 377-423.

20. Taylor J.M., Barry M. Near death experiences: poxvirus regulation of apoptotic death. Virology. 2006; 344(1): 139-50.

21. Perdiguero B., Esteban M. The interferon system and vaccinia virus evasion mechanisms. J. Interferon Cytokine Res. 2009; 29(9): 581-98.

22. Garcia M.A., Gil J., Ventoso I., Guerra S., Domingo E., Rivas C., et al. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol. Mol. Biol. Rev. 2006; 70(4): 1032-60.

23. Gil J., Rullas J., Alcam J., Esteban M. MG159L protein from the poxvirus molluscum contagiosum virus inhibits NF-kappaß activation and apoptosis induced by PKR. J. Gen. Virol. 2001; 82(pt. 12): 3027-34.

24. Haller O., Kochs G., Weber F. Interferon, Mx, and viral countermeasures. Cytokine Growth Factor Rev. 2007; 18(5-6): 425-33.

25. Brandt T.A., Jacobs B.L. Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L, are required for pathogenesis in a mouse model. J. Virol. 2001; 75(2): 850-6.

26. Gardai S.J., Bratton D.L., Ogden G.A., Henson P.M. Recognition ligands on apoptotic cells: a perspective. J. Leukoc. Biol. 2006; 79(5): 896-903.

27. Pettersen R.D. CD47 and death signaling in the immune system. Apoptosis. 2000; 5(4): 299-306.

28. Cameron C.M., Barrett J.W., Mann M., Lucas A., McFadden G. Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the down regulation of macrophage activation in vivo. Virology. 2005; 337(1): 55-67.

29. Himswort C.G., Musil K.M., Bryan L., Hill J.E. Poxvirus infections in an American red squirrel (Tamiasciurus hudsonicus) from northwestern Canada. J. Wildl. Dis. 2009; 45(4): 1143-9.

30. Collins L.M., Warnock N.D., Tosh D.G., Mcinnes C., Everest D., Montgomery W.I., et al. Squirrelpox virus: assessing prevalence, transmission and environmental degradation. Plos One. 2014; 9(2): e89521.

31. McLysaght A., Baldi P.F., Gaut B.S. Extensive gene gain associated with adaptive evolution of poxviruses. Proc. Natl. Acad. Sci. USA. 2003; 100(26): 15655-60.