Preview

Вопросы вирусологии

Расширенный поиск

МОЛЕКУЛЯРНО-БИОЛОГИЧЕСКИЕ СВОЙСТВА КЛОНИРОВАННОГО ШТАММА WA РОТАВИРУСА А ЧЕЛОВЕКА

https://doi.org/10.18821/0507-4088-2019-64-1-16-22

Полный текст:

Аннотация

Введение. Ротавирусы являются одной из главных причин возникновения тяжелых диарей у детей во всем мире. Единственным эффективным методом контроля уровня заболеваемости является вакцинация. В настоящее время для профилактики ротавирусной инфекции применяют вакцины, основанные на живых аттенуированных штаммах ротавируса человеческого или животного происхождения. Цели и задачи. Изучение биологических и генетических свойств актуального эпидемического штамма Wa генотипа G1P[8] ротавируса А (РВА) человека. Материал и методы. Определение репродуктивной активности РВА в перевиваемых клеточных линиях, концентрирование и очистка антигена РВА, ПААГ-электрофорез и иммуноблот, электрофорез вирусных геномных РНК-сегментов, определение первичной нуклеотидной последовательности (секвенирования). Результаты. В статье представлены результаты изучения биологических и молекулярно-генетических свойств штамма Wa генотипа G1P[8] РВА человека для оценки его стабильности. Штамм РВА был адаптирован к репродукции в монослойной перевиваемой культуре клеток MARC145. Инфекционный титр вируса составил 7,5-7,7 lg ТЦИД50/мл. Получен очищенный и концентрированный культуральный антиген РВА. Проведена оценка степени чистоты культурального антигена вируса методом ПААГ-электрофореза и иммуноблота. Для идентификации РВА был проведен электрофорез вирусных геномных РНК-сегментов. Отсутствие накопления изменений в геноме РВА Wa в ходе адаптации к различным клеточным культурам и при пассировании было показано методом секвенирования фрагментов вирусного генома. Заключение. В ходе проведенных исследований было установлено, что штамм Wa РВА - стабильный, обладает высокой биологической активностью: он хорошо репродуцировался в перевиваемых клеточных линиях, адаптация к клеточной линии MARC145 позволила получить титр 7,5-7,7 lg ТЦИД50/мл. Подтверждена идентичность культивируемого РВА исходному штамму Wa G1P[8].

Об авторах

К. М. Хаметова
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи», Минздрава России
Россия


К. П. Алексеев
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи», Минздрава России
Россия


А. Г. Южаков
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи», Минздрава России
Россия


Л. В. Костина
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи», Минздрава России
Россия


С. А. Раев
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи», Минздрава России
Россия


М. И. Мусиенко
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи», Минздрава России
Россия


А. Н. Мухин
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи», Минздрава России
Россия


Т. И. Алипер
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи», Минздрава России
Россия


Г. К. Воркунова
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи», Минздрава России
Россия


Т. В. Гребенникова
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи», Минздрава России; ФГАОУ ВО «Российский университет дружбы народов»
Россия


Список литературы

1. Walker C.L.F., Rudan I., Liu L., Nair H., Theodoratou E., Bhutta Z.A., et al. Global burden of childhood pneumonia and diarrhoea. Lancet. 2013; 381(9875): 1405-16. doi: 10.1016/S0140-6736(13)60222-6

2. Liu L., Oza S., Hogan D., Perin J., Rudan I., Lawn J.E., et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015; 385(9966): 430-40. doi: 10.1016/S0140-6736(14)61698-6

3. Алексеев К.П., Кальнов С.Л., Гребенникова Т.В., Алипер Т.И. Ротавирусная инфекция человека. Стратегии вакцинопрофилактики. Вопросы вирусологии. 2016; 61(3): 154-9

4. Sanderson C., Clark A., Taylor D., Bolanos B. Global review of rotavirus morbidity and mortality data by age and region. WHO; 2011. Available at: https://www.who.int/immunization/sage/meetings/2012/april/Sanderson_et_al_SAGE_April_rotavirus.pdf

5. Tate J.E., Burton A.H., Boschi-Pinto C., Parashar U.D. Global, regional, and national estimates of rotavirus mortality in children №5 years of age, 2000-2013. Clin. Infect. Dis. 2016; 62(Suppl. 2): S96-S105. doi: 10.1093/cid/civ1013

6. Gurwith M., Wenman W., Hinde D., Feltham S., Greenberg H. A prospective study of rotavirus infection in infants and young children. J. Infect. Dis. 1981; 144(3): 218-24.

7. Колпаков С.А., Колпакова Е.П. Адаптация штаммов ротавируса человека группы А и репродукция на перевиваемых культурах клеток. Вопросы вирусологии. 2017; 62(3): 138-43.

8. Бахтояров Г.Н., Лободанов С.А., Марова А.А., Мескина Е.Р., Зверев В.В., Файзулоев Е.Б. Определение генетической структуры ротавирусов группы А, циркулирующих в Московском регионе, методом ПЦР в режиме реального времени. Эпидемиология и вакцинопрофилактика. 2012; 67(3): 35-9.

9. Crawford S.E., Ramani S., Tate J.E., Parashar U.D., Svensson L., Hagbom M., et al. Rotavirus infection. Nat. Rev. Dis. Primers. 2017; 3: 17083. doi: 10.1038/nrdp.2017.83

10. Лукьянова А.М., Бехтерева М.К., Птичникова Н.Н. Клинико-эпидемиологическая характеристика вирусных диарей у детей. Журнал инфектологии. 2014; 6(1): 60-6

11. Kotloff K.L., Nataro J.P., Blackwelder W.C., Nasrin D., Farag T., Panchalingam S., et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global multicenter study, GEMS): a prospective, case control study. Lancet. 2013; 382(9888): 209-22. doi: 10.1016/S0140-6736(13)60844-2

12. Matthijnssens J., Otto P.H., Ciarlet M., Desselberger U., Van Ranst M., Johne R. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Arch. Virol. 2012; 157(6): 1177-82. doi: 10.1007/s00705-012-1273-3

13. Bhat S., Kattoor J., Malik Y., Sircar S., Deol P., Rawat V., et al. Species C Rotaviruses in Children with Diarrhea in India, 2010-2013: A Potentially Neglected Cause of Acute Gastroenteritis. Pathogens. 2018; 7(1): 1-14. doi: 10.3390/pathogens7010023

14. Estes M.K., Greenberg H.B. Rotaviruses. In: Knipe D.M., Howley P.M., eds. Fields Virology. Philadelphia: Lippincott, Williams & Wilkins; 2013: 1347-401.

15. Кондакова О.А., Никитин Н.А., Трифонова Е.А., Атабеков И.Г., Карпова О.В. Вакцины против ротавируса: новые стратегии и разработки. Вестник Московского университета. Серия 16. Биология. 2017; 72(4): 199-208

16. Parashar U.D., Hummelman E.G., Bresee J.S., Miller M.A., Glass R.I. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 2003; 9(5): 565-72.

17. Walker C.L., Taneja S., LeFevre A., Black R.E., Mazumder S. Appropriate Management of Acute Diarrhea in Children Among Public and Private Providers in Gujarat, India: A Cross-Sectional Survey. Glob. Health Sci. Pract. 2015; 3(2): 230-41. doi: 10.9745/GHSP-D-14-00209

18. Rotavirus Classification Working Group: RCWG. KU Leuven Laboratory of Viral Metagenomics. 2017. Available at: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg

19. Matthijnssens J., Bilcke J., Ciarlet M., Martella V., Bányai K., Rahman M., et al. Rotavirus disease and vaccination: impact on genotype diversity. Future Microbiol. 2009; 4(10): 1303-16. doi: 10.2217/fmb.09.96

20. Santos N., Hoshino Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev. Med. Virol. 2005; 15(1): 29-56. doi: 10.1002/rmv.448

21. Gentsch J.R., Laird A.R., Bielfelt B., Griffin D.D., Banyai K., Ramachandran M., et al. Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J. Infect. Dis. 2005; 192(Suppl. 1): S146-59. doi: 10.1086/431499

22. Matthijnssens J., Heylen E., Zeller M., Rahman M., Lemey P., Van Ranst M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol. Biol. Evol. 2010; 27(10): 2431-6. doi: 10.1093/molbev/msq137

23. Зайцева Е.В., Ольнева Т.А., Кулешов К.В., Подколзин А.Т., Шипулин Г.А., Кондратьева Л.М. и др. Результаты мониторинга антигенных типов ротавирусов гр. А на территории Российской Федерации в период 2011-2015 гг. Клиническая лабораторная диагностика. 2016; 61(7): 445-8. doi: 10.18821/0869-2084-2016-61-7-445-448

24. Денисюк Н.Б. Генетическая характеристика ротавирусов группы А, циркулирующих в Оренбургском регионе в сезон 2016-2017 гг. Детские инфекции. 2017; 16(4): 42-5.

25. Zhang J., Liu H., Jia L., Payne D.C., Hall A.J., Xu Z., et al. Active, population-based surveillance for rotavirus gastroenteritis in Chinese children: Beijing Municipalityand Gansu Province, China. Pediatr. Infect. Dis. J. 2015; 34(1): 40-6. doi: 10.1097/INF.0000000000000505.

26. Liu N., Xu Z., Li D., Zhang G., Wang H., Duan Z.J. Update on the disease burden and circulating strains of rotavirus in China: a systematic review and meta-analysis. Vaccine. 2014; 32(35): 4369-75. doi: 10.1016/j.vaccine.2014.06.018

27. Баранов А.А., Намазова-Баранова Л.С., Таточенко В.К., Вишнёва Е.А., Федосеенко М.В., Селимзянова Л.Р. и др. Ротавирусная инфекция у детей - нерешенная проблема. Обзор рекомендаций по вакцинопрофилактике. Педиатрическая фармакология. 2017; 14(4): 248-57. doi:10.15690/pf.v14i4.1756

28. Xue M., Yu L., Che Y., Lin H., Zeng Y., Fang M., et al. Characterization and protective efficacy in animal model of novel truncated rotavirus VP8 subunit parenteral vaccine candidate. Vaccine. 2015; 33(22): 2606-13. doi: 10.1016/j.vaccine.2015.03.068

29. World Health Organization. Information sheet. Observed rate of vaccine reactions - Rotavirus Vaccine. 2018. Available at: https://www.who.int/vaccine_safety/initiative/tools/Rotavirus_vaccine_rates_information_sheet_0618.pdf

30. Rippinger C.M., Patton J.T., McDonald S.M. Complete genome sequence analysis of candidate human rotavirus vaccine strains RV3 and 116E. Virology. 2010; 405(1): 201-13. doi: 10.1016/j.virol.2010.06.005

31. Desselberger U. Rotaviruses. Virus Res. 2014; 190: 75-96. doi: 10.1016/j.virusres.2014.06.016

32. WHO. Rotavirus vaccines: an update. Wkly. Epidemiol. Rec. 2012; 84(51-52): 533-37.

33. Bucardo F., Rippinger C.M., Svensson L., Patton J.T. Vaccine-derived NSP2 segment in rotaviruses from vaccinated children with gastroenteritis in Nicaragua. Infect. Genet. Evol. 2012; 12(6): 1282-94. doi: 10.1016/j.meegid.2012.03.007

34. Hemming M., Vesikari T. Detection of rotateq vaccine-derived, double-reassortant rotavirus in a 7-year-old child with acute gastroenteritis. Pediatr. Infect. Dis. J. 2014; 33(6): 655-6. doi: 10.1097/INF.0000000000000221.

35. Soma J., Tsunemitsu H., Miyamoto T., Suzuki G., Sasaki T., Suzuki T. Whole-genome analysis of two bovine rotavirus C strains: Shintoku and Toyama. J. Gen. Virol. 2013; 94(Pt. 1):128-35. doi: 10.1099/vir.0.046763-0

36. Ward L.A., Rosen B.I., Yuan L., Saif L.J. Pathogenesis of an attenuated and a virulent strain of group A human rotavirus in neonatal gnotobiotic pigs. J. Gen. Virol. 1996; 77(Pt. 7): 1431-41. doi: 10.1099/0022-1317-77-7-1431.

37. Ghosh S., Alam M.M., Ahmed M.U., Talukdar R.I., Paul S.K., Kobayashi N. Complete genome constellation of a caprinegroup A rotavirus strain reveals common evolution withruminant and human rotavirus strains. J. Gen. Virol. 2010; 91(Pt. 9): 2367-73. doi: 10.1099/vir.0.022244-0

38. Azevedo M.P., Vlasova A.N., Saif L.J. Human rotavirus virus-like particle vaccines evaluated in a neonatal gnotobiotic pig model of human rotavirus disease. Expert Rev. Vaccines. 2013; 12(2): 169-81. doi: 10.1586/erv.13.3

39. Friess A.E., Sinowatz F., Skolek-Winnisch R., Träutner W. The placenta of the pig. II. The ultrastructure of the areolae. Anat. Embryol. (Berl.) 1981; 163(1): 43-53.

40. Lala P.K., Chatterjee-Hasrouni S., Kearns M., Montgomery B., Colavincenzo V. Immunobiology of the feto-maternal interface. Immunol. Rev. 1983; 75: 87-116.

41. Yuan L., Ward L.A., Rosen B.I., To T.L., Saif L.J. Systematic and intestinal antibodysecreting cell responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease. J. Virol. 1996; 70(5): 3075-83.

42. Burns J.W., Krishnaney A.A., Vo P.T., Rouse R.V., Anderson L.J., Greenberg H.B. Analyses of homologous rotavirus infection in the mouse model. Virology. 1995; 207(1): 143-53. doi: 10.1006/viro.1995.1060.

43. Ciarlet M., Conner M.E., Finegold M.J., Estes M.K. Group A rotavirus infection and age-dependent diarrheal disease in rats: a new animal model to study the pathophysiology of rotavirus infection. J. Virol.2002; 76(1): 41-57.

44. Wyatt R.G., James W.D., Bohl E.H., Theil K.W., Saif L.J., Kalica A.R., et al. 1980. Human rotavirus type 2: cultivation in vitro. Science. 1980; 207(4427): 189-91.

45. Bohl E.H., Salt L.J., Theil K.W., Agnes A.G., Cross R.F. Porcine pararotavirus: detection, differentiation from rotavirus, and pathogenesis in gnotobiotic pigs. J. Clin. Microbiol. 1982; 15(2): 312-9.

46. WHO. Manual of rotavirus detection and characterization methods. 2009. Available at: https://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/sentinel/WHO_IVB_08.17_eng.pdf

47. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Methods. 1984; 10(3-4): 203-9.

48. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259): 680-5.


Для цитирования:


Хаметова К.М., Алексеев К.П., Южаков А.Г., Костина Л.В., Раев С.А., Мусиенко М.И., Мухин А.Н., Алипер Т.И., Воркунова Г.К., Гребенникова Т.В. МОЛЕКУЛЯРНО-БИОЛОГИЧЕСКИЕ СВОЙСТВА КЛОНИРОВАННОГО ШТАММА WA РОТАВИРУСА А ЧЕЛОВЕКА. Вопросы вирусологии. 2019;64(1):16-22. https://doi.org/10.18821/0507-4088-2019-64-1-16-22

For citation:


Khametova K.M., Alekseev K.P., Yuzhakov A.G., Kostina L.V., Raev S.A., Musienko M.I., Mukhin A.N., Aliper T.I., Vorkunova G.K., Grebennikova T.V. EVALUATION OF THE MOLECULAR-BIOLOGICAL PROPERTIES OF HUMAN ROTAVIRUS A STRAIN WA. Problems of Virology. 2019;64(1):16-22. (In Russ.) https://doi.org/10.18821/0507-4088-2019-64-1-16-22

Просмотров: 197


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0507-4088 (Print)
ISSN 2411-2097 (Online)