Журналов:     Статей:        

Вопросы вирусологии.

Вирус гепатита С (Flaviviridae: Hepacivirus: Hepacivirus C): регуляция сигнальных реакций врождённого иммунитета

Соколова Т. М.

https://doi.org/10.36233/0507-4088-2020-65-6-1

Аннотация

Изучение регуляции сигнальных реакций врождённого иммунитета вирусом гепатита С (ВГС) поможет раскрыть причины перехода острой формы заболевания в хроническое течение. Рассмотрены молекулярные механизмы активации рибонуклеиновой кислотой ВГС рецепторов TLRs (Toll-like) и RLRs (RIG-like) врождённого иммунитета и процессов сигнальной трансдукции, приводящей к синтезу интерферона и воспалительных цитокинов. Подробно проанализированы ингибирующие эффекты неструктурных и структурных белков ВГС на сигнальные реакции иммунитета. Представленная информация является результатом анализа литературных данных, опубликованных в международных базах преимущественно за последние 5 лет. В заключение сигнальные рецепторы предлагаются как мишени для разработки новых противовирусных препаратов с иммунотерапевтической активностью.
Список литературы

1. Tsukiyama–Kohara K., Kohara M. Hepatitis C virus: viral quasispecies and genotypes. Int. J. Mol. Sci. 2017; 19(1): 23. https://doi.org/10.3390/ijms19010023

2. Borgia S.M., Hedskog C., Parhy B., Hyland R.H., Stamm L.M., Brainard D.M., et al. Identification of a novel hepatitis C virus genotype from Punjab, India: expanding classification of hepatitis C Virus into 8 genotypes. J. Infect. Dis. 2018; 218(11): 1722–9. https://doi.org/10.1093/infdis/jiy401

3. ВОЗ. Гепатит С. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/hepatitis-c

4. Duncan J.D., Urbanowicz R.A., Tarr A.W., Ball J.K. Hepatitis C virus vaccine: challenges and prospects. Vaccines (Basel). 2020; 8(1): 90. https://doi.org/10.3390/vaccines8010090

5. Ferreira A.R., Ramos B., Nunes A., Ribeiro D. Hepatitis C virus: evading the intracellular innate immunity. J. Clin. Med. 2020; 9(3): 790. https://doi.org/10.3390/jcm9030790

6. Chigbu D.I., Loonawat R., Sehgal M., Patel D., Jain P. Hepatitis C virus infection: host-virus interaction and mechanisms of viral persistence. Cells. 2019; 8(4): 376. https://doi.org/10.3390/cells8040376

7. Wong M.T., Chen S.S.L. Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell. Mol. Immunol. 2016; 13(1): 11–35. https://doi.org/10.1038/cmi.2014.127

8. Xu Y., Zhong J. Innate immunity against hepatitis C virus. Curr. Opin. Immunol. 2016; 42: 98–104. https://doi.org/10.1016/j.coi.2016.06.009

9. Chen S., Wu Z., Wang M., Cheng A. Innate immune evasion mediated by flaviviridae non–structural proteins. Viruses. 2017; 9(10): 291. https://doi.org/10.3390/v9100291

10. Spengler U. Direct antiviral agents (DAAs) – А new age in the treatment of hepatitis C virus infection. Pharmacol. Ther. 2018; 183: 118–26. https://doi.org/10.1016/j.pharmthera.2017.10.009

11. Sung P.S., Shin E.C. Interferon response in hepatitis C virus-infected hepatocytes: issues to consider in the era of direct-acting antivirals. Int. J. Mol. Sci. 2020; 21(7): 2583. https://doi.org/10.3390/ijms21072583

12. Ning G., Li Y.T., Chen Y.M., Zhang Y., Zeng Y.F., Lin C.S. Dynamic changes of the frequency of classic and inflammatory monocytes subsets and natural killer cells in chronic hepatitis C patients treated by direct-acting antiviral agents. Can. J. Gastroenterol. Hepatol. 2017; 3612403. https://doi.org/10.1155/2017/36124030

13. Черных Е.Р., Олейник Е.А., Леплина О.Ю., Старостина Н.М., Останин А.А. Дендритные клетки в патогенезе вирусного гепатита С. Инфекция и иммунитет. 2019; 9(2): 239–52. https://doi.org/10.15789/2220-7619-2019-2-239-252

14. Ramirez S., Bukh J. Current status and future development of infectious cell–culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res. 2018; 158: 264–87. https://doi.org/10.1016/j.antiviral.2018.07.014

15. Masalova О.V., Lesnova E.I., Solyev P.N., Zakirova N.F., Prassolov V.S., Kochetkov S.N., et al. Modulation of cell death pathways by hepatitis C virus proteins in Huh7.5 hepatoma cells. Int. J. Mol. Sci. 2017; 18: 2346. https://doi.org/10.3390/ijms18112346

16. Brubaker S.W., Bonham K.S., Zanoni I., Kagan J.C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 2015; 33: 257–90. https://doi.org/10.1146/annurevimmunol-032414-112240

17. Соколова Т.М. Иммунное узнавание вирусных нуклеиновых кислот приводит к индукции интерферонов (ИФН) и воспалительных цитокинов. В кн.: Ершов Ф.И., Наровлянский А.Н., ред. Сборник научных трудов «Интерферон–2011». М.; 2012: 52–62.

18. Yang D.R., Zhu H.Z. Hepatitis C Virus and antiviral innate immunity: who wins at tug-of-war? World. J. Gastroenterol. 2015; 21(13): 3786–800. https://doi.org/10.3748/wjg.v21.i13.3786

19. Arnaud N., Dabo S., Maillard P., Budkowska A., Kalliampakou K.I., Mavromara P., et al. Hepatitis C virus controls interferon production through PKR activation. PLoS One. 2010; 5(5): e10575. https://doi.org/10.1371/journal.pone.0010575

20. Brisse M., Ly H. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front. Immunol. 2019; 10: 1586. https://doi.org/10.3389/fimmu.2019.01586

21. Hei L., Zhong J. Laboratory of Genetics and Physiology 2 (LGP2) plays an essential role in hepatitis C virus infection-induced interferon responses. Hepatology. 2017; 65(5): 1478–91. https://doi.org/10.1002/hep.29050

22. Bender S., Reuter A., Eberle F., Einhorn E., Binder M., Bartenschlager R. Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus. PLoS. Pathog. 2015; 11(11): e1005264. https://doi.org/10.1371/journal.ppat.1005264

23. Ran Y., Shu H.B., Wang Y.Y. MITA/STING: a central and multifaceted mediator in innate immune response. Cytokine Growth Factor Rev. 2014; 25(6): 631–9. https://doi.org/10.1016/j.cytogfr.2014.05.003

24. Ding Q., Cao X., Lu J., Huang B., Liu Y.J., Kato N., et al. Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. J. Hepatol. 2013; 59(1): 52–8. https://doi.org/10.1016/j.jhep.2013.03.019

25. Ashfaq U.A., Iqbal M.S., Khaliq S. Role of toll-like receptors in hepatitis C virus pathogenesis and treatment. Crit. Rev. Eukaryot. Gene Expr. 2016; 26(4): 353–62. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2016017455

26. Zhang Z., Ohto U., Shimizu T. Toward a structural understanding of nucleic acid-sensing Toll-like receptors in the innate immune system. FEBS Letters. 2017; 591: 3167–81. https://doi.org/10.1002/1873-3468.12749

27. Grünvogel O., Colasanti O., Lee J.Y., Klöss V., Belouzard S., Reustle A., et al. Secretion of hepatitis C virus replication intermediates reduces activation of toll-like receptor 3 in hepatocytes. Gastroenterology. 2018; 154 (8): 2237–51.е16. https://doi.org/10.1053/j.gastro.2018.03.020

28. Dreux M., Garaigorta U., Boyd B., Decembre E., Chung J., Whitten-Bauer C., et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell. Host Microbe. 2012; 12(4): 558–70. https://doi.org/10.1016/j.chom.2012.08.010

29. Szabo A., Rajnavolgyi E. Collaboration of Toll-like and RIG-I-like receptors in human dendritic cells: tRIGgering antiviral innate immune responses. Am. J. Clin. Exp. Immunol. 2013; 2(3): 195–207.

30. Bruening J., Weigel B., Gerold G.J. The role of type iii interferons in hepatitis C virus infection and therapy. Immunol. Res. 2017; 7232361. https://doi.org/10.1155/2017/7232361

31. Wang W., Xu L., Su J., Peppelenbosch M.P., Pan Q. Transcriptional regulation of antiviral interferon-stimulated genes. Trends Microbiol. 2017; 25(7): 573–84. https://doi.org/10.1016/j.tim.2017.01.001

32. Li Y., Yamane D., Masaki T., Lemon S.M. The yin and yang of hepatitis C: synthesis and decay of HCV RNA. Nat. Rev. Microbiol. 2015; 13(9): 544–58. https://doi.org/10.1038/nrmicro3506

33. Amador-Cañizares Y., Bernier A., Wilson J.A., Sagan S.M. МiR122 does not impact recognition of the HCV genome by innate sensors of RNA but rather protects the 5’ end from the cellular pyrophosphatases, DOM3Z and DUSP11. Nucleic Acids Res. 2018; 46(10): 5139–58. https://doi.org/10.1093/nar/gky273

34. Schnell G., Loo Y.M., Marcotrigiano J., Gale M. Uridine composition of the poly-U/UC tract of HCV RNA defines non-self recognition by RIGI. PLoS Pathog. 2012; 8(8): e1002839. https://doi.org/10.1371/journal.ppat.1002839

35. Dabo S., Meurs E.F. dsRNA-dependent protein kinase PKR and its role in stress, signaling and HCV infection. Viruses. 2012; 4(11): 2598–635. https://doi.org/10.3390/v4112598

36. Toroney R., Nallagatla S.R., Boyer J.A., Cameron C.E., Bevilacqua P.C. Regulation of PKR by HCV IRES RNA: Importance of domain II and NS5A. J. Mol. Biol. 2010; 400(3): 393–412. https://doi.org/10.1016/j.jmb.2010.04.059

37. Imran M., Waheed Y., Manzoor S., Bilal M., Ashraf W., Ali M., et al. Interaction of hepatitis C virus proteins with pattern recognition receptors. Virol. J. 2012; 9: 126. https://doi.org/10.1186/1743-422x-9-126

38. Chung H., Watanabe T., Kudo M., Chiba T. Hepatitis C virus core protein induces homotolerance and cross-tolerance to toll-like receptor ligands by activation of toll-like receptor 2. J. Infect. Dis. 2010; 202(6): 853–61. https://doi.org/10.1086/655812

39. Kaukinen P., Sillanpaa M., Nousiainen L., Melen K., Julkunen I. Hepatitis C virus NS2 protease inhibits host cell antiviral response by inhibiting IKKepsilon and TBK1 functions. J. Med. Virol. 2013; 85(1): 71–82. https://doi.org/10.1002/jmv.23442

40. Zhou H., Qian Qi., Shu T., Xu J., Kong J., Mu J., et al. Hepatitis C virus NS2 protein suppresses RNA interference in cells. Virol. Sin. 2019; 35(4): 1–9. https://doi.org/10.1007/s12250-019-00182-5

41. Yan Y., He Y., Boson B.,Wang X., Cosset F. L., Zhong J.A. Point mutation in the N-terminal amphipathic helix 0 in NS3 promotes hepatitis virus assembly by altering core localization to the endoplasmic reticulum and facilitating virus budding. J. Virol. 2017; 91(6): e02399–16. https://doi.org/10.1128/JVI.02399-16

42. Ferreon J.C., Ferreon C.M., Li K., Lemon S.M. Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease. J. Biol. Chem. 2005; 280(21): 20483–92. https://doi.org/10.1074/jbc.M500422200

43. Ferreira A.R., Magalhães A.C., Camões F., Gouveia A., Vieira M., Kagan J.C., et al. Hepatitis C virus NS3–4A inhibits the peroxisomal MAVS-dependent antiviral signaling response. J. Cell Mol. Med. 2016; 20(4): 750–7. https://doi.org/10.1111/jcmm.12801

44. Vazquez C., Tan C.Y., Horner S.M. Hepatitis C virus infection is inhibited by a non-canonical antiviral signaling pathway targeted by NS3-NS4A. J. Virol. 2019; 93(23) e00725-19. https://doi.org/10.1128/JVI.00725-19

45. Chen Y., He L., Peng Y., Shi X., Chen J., Zhong J., et al. The hepatitis C virus protein NS3 suppresses TNF-stimulated activation of NF-kB by targeting LUBAC. Sci. Signal. 2015; 8(403): ra118. DOI: https://doi.org/10.1126/scisignal.aab2159

46. Nitta S., Sakamoto N., Nakagawa M., Kakinuma S., Mishima K., Kusano-Kitazume A., et al. Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology. 2013; 57(1): 46–58. https://doi.org/10.1002/hep.26017

47. Ding Q., Cao X., Lu J., Huang B., Liu Y.J., Kato N., et al. Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. J. Hepatol. 2013; 59(1): 52–8. https://doi.org/10.1016/j.jhep.2013.03.019

48. Yi G., Wen Y., Shu C., Han Q., Konan K.V., Li P., et al. The hepatitis C virus NS4B Can suppress STING accumulation to evade innate immune responses. J. Virol. 2015; 90(1): 254–65. DOI: https://doi.org/10.1128/JVI.01720–15

49. Horner S.M., Liu H.M., Park H.S., Briley J., Gale M. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc. Nat. Acad. Sci. USA. 2011; 108(35): 14590–5. https://doi.org/10.1073/pnas.1110133108

50. Liang Y., Cao X., Ding Q., Zhao Y., He Z., Zhong J. Hepatitis C virus NS4B induces the degradation of TRIF to inhibit TLR3-mediated interferon signaling pathway. PLoS Pathog. 2018; 14(5): e1007075. https://doi.org/10.1371/journal.ppat.1007075

51. Kong L., Li S., Huang M., Xiong Y., Zhang Q., Ye L., et al. The roles of endoplasmic reticulum overload response induced by HCV and NS4B protein in human hepatocyte viability and virus replication. PLoS One. 2015; 10(4): e0123190. https://doi.org/10.1371/journal.pone.0123190

52. Hiet M.S., Bauhofer O., Zayas M., Roth H., Tanaka Y., Schirmacher P., et al. Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A. J. Hepatol. 2015; 63(4): 829–37. https://doi.org/10.1016/j.jhep.2015.04.015

53. Sugiyama R., Murayama A., Nitta S., Yamada N., Tasaka-Fujita M., Masaki T., et al. Interferon sensitivity–determining region of hepatitis C virus influences virus production and interferon signaling. Oncotarget. 2018; 9(5): 5627-40. https://doi.org/10.18632/oncotarget.23562

54. Abe T., Kaname Y., Hamamoto I., Tsuda Y., Wen X., Taguwa S., et al. Hepatitis C virus nonstructural protein 5A modulates the Toll-like receptor-MyD88-dependent signaling pathway in macrophage cell lines. J. Virol. 2007; 81(17): 8953–66. https://doi.org/10.1128/JVI.00649-07

55. Chowdhury J.B., Kim H., Ray R., Ray R.B. Hepatitis C virus NS5A protein modulates IRF-7-mediated interferon-β signaling. J. Interferon Cytokine Res. 2014; 34(1): 16–21. https://doi.org/10.1089/jir.2013.0038

56. Kumthip K., Chusri P., Jilg N., Zhao L., Fusco D.N., Zhao H., et al. Hepatitis C virus NS5A disrupts STAT1 phosphorylation and suppresses type I interferon signaling. J. Virol. 2012; 86(16): 8581–91. https://doi.org/10.1128/JVI.00533-12

57. Çevik R.E., Cesarec M., Da A., Filipe S., Licastro D., Mclauchlan J., et al. Hepatitis C virus NS5A targets nucleosome assembly protein NAP1L1 to control the innate cellular response. J Virol. 2017; 91(18): e00880–17. https://doi.org/10.1128/JVI.00880-17

58. Nitta S., Asahina Y., Matsuda M., Yamada N., Sugiyama R., Masaki T., et al. Effects of resistance–associated NS5A mutations in hepatitis C virus on viral production and susceptibility to antiviral reagents. Sci. Rep. 2016; 6: 34652. https://doi.org/10.1038/srep34652

59. Polyak S.J., Khabar K.S., Rezeiq M., Gretch D.R. Elevated levels of interleukin-8 in serum are associated with hepatitis C virus infection and resistance to interferon therapy. J. Virol. 2001; 75(13): 6209–11. https://doi.org/10.1128/JVI.75.13.6209-6211.2001

60. Miyasaka Y., Enomoto N., Kurosaki M., Sakamoto N., Kanazawa N., Kohashi T., et al. Hepatitis C virus nonstructural protein 5A inhibits tumor necrosis factor-a-mediated apoptosis in Huh7 cells. J. Infect. Dis. 2003; 188(10): 1537–44. https://doi.org/10.1086/379253

61. Zhang Q., Wang Y., Zhai N., Song H., Li H., Yang Y., et al. HCV core protein inhibits polarization and activity of both M1 and M2 macrophages through the TLR2 signaling pathway. Sci. Rep. 2016; 6: 36160. https://10.1038/srep36160

62. Dolganiuc A., Chang S., Kodys K., Mandrekar P., Bakis G., Cormier M., et al. Hepatitis C virus (HCV) core protein-induced, monocyte-mediated mechanisms of reduced IFN-alpha and plasmacytoid dendritic cell loss in chronic HCV infection. J. Immunol. 2006; 177(10): 6758–68. https://doi.org/10.4049/jimmunol.177.10.6758

63. Luquin E., Larrea E., Civeira M.P., Prieto J., Aldabe R. HCV structural proteins interfere with interferon-alpha Jak/STAT signalling pathway. Antiviral Res. 2007; 76(2): 194–7. https://doi.org/10.1016/j.antiviral.2007.06.004

64. Stone A.E.L., Mitchell A., Brownell J., Miklin D.J., Golden-Mason L., Polyak S.J., et al. Hepatitis C virus core protein inhibits interferon production by a human plasmacytoid dendritic cell line and dysregulates interferon regulatory factor-7 and Signal Transducer and Activator of Transcription (STAT) 1 protein expression. PLoS One. 2014; 9(5): e95627. https://doi.org/10.1371/journal.pone.0095627

65. Bode J.G., Ludwig S., Ehrhardt C., Albrecht U., Erhardt A., Schaper F., et al. IFN-alpha antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. FASEB J. 2003; 17(3): 488–90. https://doi.org/10.1096/fj.02–0664fje

66. Negash A.A., Olson R.M., Griffin S., Gale M. Modulation of calcium signaling pathway by hepatitis C virus core protein stimulates NLRP3 inflammasome activation. PLoS Pathog. 2019; 15(2): e1007593. https://doi.org/10.1371/journal.ppat.1007593

67. Ivanov A.V., Smirnova O.A., Petrushanko I.Y., Ivanova O.N., Karpenko I.L., Alekseeva E., et al. HCV core protein uses multiple mechanisms to induce oxidative stress in human hepatoma Huh7 cells. Viruses. 2015; 7(6): 2745–70. https://doi.org/10.1371/journal.ppat.1007593

68. Parvaiz F., Manzoor S., Tariq H., Javed F., Fatima K., Qadri I. Hepatitis C virus infection: molecular pathways to insulin resistance. Virol. J. 2011; 8: 474. https://doi.org/10.1186/1743-422X-8-474

69. Cao L., Yu B., Kong D., Cong Q., Yu T., Chen Z., et al. Functional expression and characterization of the envelope glycoprotein E1E2 heterodimer of hepatitis C virus. PLoS Pathog. 2019; 15(5): e1007759. https://doi.org/10.1371/journalppat.1007759

70. Bolcic F., Sede M., Moretti F., Westergaard G., Vazquez M., Laufer N., et al. Analysis of the PKR-eIF2alpha phosphorylation homology domain (PePHD) of hepatitis C virus genotype 1 in HIV-coinfected patients by ultra-deep pyrosequencing and its relationship to responses to pegylated interferon-ribavirin treatment. Arch. Virol. 2012; 157(4):703–11. https://doi.org/10.1007/s00705-012-1230-1

71. Qi H., Chu V., Wu N.C., Chen Z., Truong S., Brar G., et al. Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein. Proc. Natl. Acad. Sci. USA. 2017; 114(8): 2018–23. https://doi.org/10.1073/pnas.1614623114

Problems of Virology.

Hepatitis C virus (Flaviviridae: Hepacivirus: Hepacivirus C): regulation of signaling reactions of innate immunity

Sokolova T. M.

https://doi.org/10.36233/0507-4088-2020-65-6-1

Abstract

Studying the regulation of signaling reactions of innate immunity by the hepatitis C virus (HCV) will help to reveal the causes of the transition of the acute form of the disease to a chronic course. The molecular mechanisms of activation by HCV RNA of innate immunity receptors TLR and RLR and signal transduction processes leading to the synthesis of IFN and inflammatory cytokines are considered. The inhibitory effects of non-structural and structural HCV proteins on immune signaling reactions are analyzed in detail. The information presented is the result of an analysis of literature data published in international databases mainly over the past 5 years. In conclusion, signaling receptors are proposed as targets for the development of new antiviral drugs with immunotherapeutic activity.
References

1. Tsukiyama–Kohara K., Kohara M. Hepatitis C virus: viral quasispecies and genotypes. Int. J. Mol. Sci. 2017; 19(1): 23. https://doi.org/10.3390/ijms19010023

2. Borgia S.M., Hedskog C., Parhy B., Hyland R.H., Stamm L.M., Brainard D.M., et al. Identification of a novel hepatitis C virus genotype from Punjab, India: expanding classification of hepatitis C Virus into 8 genotypes. J. Infect. Dis. 2018; 218(11): 1722–9. https://doi.org/10.1093/infdis/jiy401

3. VOZ. Gepatit S. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/hepatitis-c

4. Duncan J.D., Urbanowicz R.A., Tarr A.W., Ball J.K. Hepatitis C virus vaccine: challenges and prospects. Vaccines (Basel). 2020; 8(1): 90. https://doi.org/10.3390/vaccines8010090

5. Ferreira A.R., Ramos B., Nunes A., Ribeiro D. Hepatitis C virus: evading the intracellular innate immunity. J. Clin. Med. 2020; 9(3): 790. https://doi.org/10.3390/jcm9030790

6. Chigbu D.I., Loonawat R., Sehgal M., Patel D., Jain P. Hepatitis C virus infection: host-virus interaction and mechanisms of viral persistence. Cells. 2019; 8(4): 376. https://doi.org/10.3390/cells8040376

7. Wong M.T., Chen S.S.L. Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell. Mol. Immunol. 2016; 13(1): 11–35. https://doi.org/10.1038/cmi.2014.127

8. Xu Y., Zhong J. Innate immunity against hepatitis C virus. Curr. Opin. Immunol. 2016; 42: 98–104. https://doi.org/10.1016/j.coi.2016.06.009

9. Chen S., Wu Z., Wang M., Cheng A. Innate immune evasion mediated by flaviviridae non–structural proteins. Viruses. 2017; 9(10): 291. https://doi.org/10.3390/v9100291

10. Spengler U. Direct antiviral agents (DAAs) – A new age in the treatment of hepatitis C virus infection. Pharmacol. Ther. 2018; 183: 118–26. https://doi.org/10.1016/j.pharmthera.2017.10.009

11. Sung P.S., Shin E.C. Interferon response in hepatitis C virus-infected hepatocytes: issues to consider in the era of direct-acting antivirals. Int. J. Mol. Sci. 2020; 21(7): 2583. https://doi.org/10.3390/ijms21072583

12. Ning G., Li Y.T., Chen Y.M., Zhang Y., Zeng Y.F., Lin C.S. Dynamic changes of the frequency of classic and inflammatory monocytes subsets and natural killer cells in chronic hepatitis C patients treated by direct-acting antiviral agents. Can. J. Gastroenterol. Hepatol. 2017; 3612403. https://doi.org/10.1155/2017/36124030

13. Chernykh E.R., Oleinik E.A., Leplina O.Yu., Starostina N.M., Ostanin A.A. Dendritnye kletki v patogeneze virusnogo gepatita S. Infektsiya i immunitet. 2019; 9(2): 239–52. https://doi.org/10.15789/2220-7619-2019-2-239-252

14. Ramirez S., Bukh J. Current status and future development of infectious cell–culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res. 2018; 158: 264–87. https://doi.org/10.1016/j.antiviral.2018.07.014

15. Masalova O.V., Lesnova E.I., Solyev P.N., Zakirova N.F., Prassolov V.S., Kochetkov S.N., et al. Modulation of cell death pathways by hepatitis C virus proteins in Huh7.5 hepatoma cells. Int. J. Mol. Sci. 2017; 18: 2346. https://doi.org/10.3390/ijms18112346

16. Brubaker S.W., Bonham K.S., Zanoni I., Kagan J.C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 2015; 33: 257–90. https://doi.org/10.1146/annurevimmunol-032414-112240

17. Sokolova T.M. Immunnoe uznavanie virusnykh nukleinovykh kislot privodit k induktsii interferonov (IFN) i vospalitel'nykh tsitokinov. V kn.: Ershov F.I., Narovlyanskii A.N., red. Sbornik nauchnykh trudov «Interferon–2011». M.; 2012: 52–62.

18. Yang D.R., Zhu H.Z. Hepatitis C Virus and antiviral innate immunity: who wins at tug-of-war? World. J. Gastroenterol. 2015; 21(13): 3786–800. https://doi.org/10.3748/wjg.v21.i13.3786

19. Arnaud N., Dabo S., Maillard P., Budkowska A., Kalliampakou K.I., Mavromara P., et al. Hepatitis C virus controls interferon production through PKR activation. PLoS One. 2010; 5(5): e10575. https://doi.org/10.1371/journal.pone.0010575

20. Brisse M., Ly H. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front. Immunol. 2019; 10: 1586. https://doi.org/10.3389/fimmu.2019.01586

21. Hei L., Zhong J. Laboratory of Genetics and Physiology 2 (LGP2) plays an essential role in hepatitis C virus infection-induced interferon responses. Hepatology. 2017; 65(5): 1478–91. https://doi.org/10.1002/hep.29050

22. Bender S., Reuter A., Eberle F., Einhorn E., Binder M., Bartenschlager R. Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus. PLoS. Pathog. 2015; 11(11): e1005264. https://doi.org/10.1371/journal.ppat.1005264

23. Ran Y., Shu H.B., Wang Y.Y. MITA/STING: a central and multifaceted mediator in innate immune response. Cytokine Growth Factor Rev. 2014; 25(6): 631–9. https://doi.org/10.1016/j.cytogfr.2014.05.003

24. Ding Q., Cao X., Lu J., Huang B., Liu Y.J., Kato N., et al. Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. J. Hepatol. 2013; 59(1): 52–8. https://doi.org/10.1016/j.jhep.2013.03.019

25. Ashfaq U.A., Iqbal M.S., Khaliq S. Role of toll-like receptors in hepatitis C virus pathogenesis and treatment. Crit. Rev. Eukaryot. Gene Expr. 2016; 26(4): 353–62. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2016017455

26. Zhang Z., Ohto U., Shimizu T. Toward a structural understanding of nucleic acid-sensing Toll-like receptors in the innate immune system. FEBS Letters. 2017; 591: 3167–81. https://doi.org/10.1002/1873-3468.12749

27. Grünvogel O., Colasanti O., Lee J.Y., Klöss V., Belouzard S., Reustle A., et al. Secretion of hepatitis C virus replication intermediates reduces activation of toll-like receptor 3 in hepatocytes. Gastroenterology. 2018; 154 (8): 2237–51.e16. https://doi.org/10.1053/j.gastro.2018.03.020

28. Dreux M., Garaigorta U., Boyd B., Decembre E., Chung J., Whitten-Bauer C., et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell. Host Microbe. 2012; 12(4): 558–70. https://doi.org/10.1016/j.chom.2012.08.010

29. Szabo A., Rajnavolgyi E. Collaboration of Toll-like and RIG-I-like receptors in human dendritic cells: tRIGgering antiviral innate immune responses. Am. J. Clin. Exp. Immunol. 2013; 2(3): 195–207.

30. Bruening J., Weigel B., Gerold G.J. The role of type iii interferons in hepatitis C virus infection and therapy. Immunol. Res. 2017; 7232361. https://doi.org/10.1155/2017/7232361

31. Wang W., Xu L., Su J., Peppelenbosch M.P., Pan Q. Transcriptional regulation of antiviral interferon-stimulated genes. Trends Microbiol. 2017; 25(7): 573–84. https://doi.org/10.1016/j.tim.2017.01.001

32. Li Y., Yamane D., Masaki T., Lemon S.M. The yin and yang of hepatitis C: synthesis and decay of HCV RNA. Nat. Rev. Microbiol. 2015; 13(9): 544–58. https://doi.org/10.1038/nrmicro3506

33. Amador-Cañizares Y., Bernier A., Wilson J.A., Sagan S.M. MiR122 does not impact recognition of the HCV genome by innate sensors of RNA but rather protects the 5’ end from the cellular pyrophosphatases, DOM3Z and DUSP11. Nucleic Acids Res. 2018; 46(10): 5139–58. https://doi.org/10.1093/nar/gky273

34. Schnell G., Loo Y.M., Marcotrigiano J., Gale M. Uridine composition of the poly-U/UC tract of HCV RNA defines non-self recognition by RIGI. PLoS Pathog. 2012; 8(8): e1002839. https://doi.org/10.1371/journal.ppat.1002839

35. Dabo S., Meurs E.F. dsRNA-dependent protein kinase PKR and its role in stress, signaling and HCV infection. Viruses. 2012; 4(11): 2598–635. https://doi.org/10.3390/v4112598

36. Toroney R., Nallagatla S.R., Boyer J.A., Cameron C.E., Bevilacqua P.C. Regulation of PKR by HCV IRES RNA: Importance of domain II and NS5A. J. Mol. Biol. 2010; 400(3): 393–412. https://doi.org/10.1016/j.jmb.2010.04.059

37. Imran M., Waheed Y., Manzoor S., Bilal M., Ashraf W., Ali M., et al. Interaction of hepatitis C virus proteins with pattern recognition receptors. Virol. J. 2012; 9: 126. https://doi.org/10.1186/1743-422x-9-126

38. Chung H., Watanabe T., Kudo M., Chiba T. Hepatitis C virus core protein induces homotolerance and cross-tolerance to toll-like receptor ligands by activation of toll-like receptor 2. J. Infect. Dis. 2010; 202(6): 853–61. https://doi.org/10.1086/655812

39. Kaukinen P., Sillanpaa M., Nousiainen L., Melen K., Julkunen I. Hepatitis C virus NS2 protease inhibits host cell antiviral response by inhibiting IKKepsilon and TBK1 functions. J. Med. Virol. 2013; 85(1): 71–82. https://doi.org/10.1002/jmv.23442

40. Zhou H., Qian Qi., Shu T., Xu J., Kong J., Mu J., et al. Hepatitis C virus NS2 protein suppresses RNA interference in cells. Virol. Sin. 2019; 35(4): 1–9. https://doi.org/10.1007/s12250-019-00182-5

41. Yan Y., He Y., Boson B.,Wang X., Cosset F. L., Zhong J.A. Point mutation in the N-terminal amphipathic helix 0 in NS3 promotes hepatitis virus assembly by altering core localization to the endoplasmic reticulum and facilitating virus budding. J. Virol. 2017; 91(6): e02399–16. https://doi.org/10.1128/JVI.02399-16

42. Ferreon J.C., Ferreon C.M., Li K., Lemon S.M. Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease. J. Biol. Chem. 2005; 280(21): 20483–92. https://doi.org/10.1074/jbc.M500422200

43. Ferreira A.R., Magalhães A.C., Camões F., Gouveia A., Vieira M., Kagan J.C., et al. Hepatitis C virus NS3–4A inhibits the peroxisomal MAVS-dependent antiviral signaling response. J. Cell Mol. Med. 2016; 20(4): 750–7. https://doi.org/10.1111/jcmm.12801

44. Vazquez C., Tan C.Y., Horner S.M. Hepatitis C virus infection is inhibited by a non-canonical antiviral signaling pathway targeted by NS3-NS4A. J. Virol. 2019; 93(23) e00725-19. https://doi.org/10.1128/JVI.00725-19

45. Chen Y., He L., Peng Y., Shi X., Chen J., Zhong J., et al. The hepatitis C virus protein NS3 suppresses TNF-stimulated activation of NF-kB by targeting LUBAC. Sci. Signal. 2015; 8(403): ra118. DOI: https://doi.org/10.1126/scisignal.aab2159

46. Nitta S., Sakamoto N., Nakagawa M., Kakinuma S., Mishima K., Kusano-Kitazume A., et al. Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology. 2013; 57(1): 46–58. https://doi.org/10.1002/hep.26017

47. Ding Q., Cao X., Lu J., Huang B., Liu Y.J., Kato N., et al. Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. J. Hepatol. 2013; 59(1): 52–8. https://doi.org/10.1016/j.jhep.2013.03.019

48. Yi G., Wen Y., Shu C., Han Q., Konan K.V., Li P., et al. The hepatitis C virus NS4B Can suppress STING accumulation to evade innate immune responses. J. Virol. 2015; 90(1): 254–65. DOI: https://doi.org/10.1128/JVI.01720–15

49. Horner S.M., Liu H.M., Park H.S., Briley J., Gale M. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc. Nat. Acad. Sci. USA. 2011; 108(35): 14590–5. https://doi.org/10.1073/pnas.1110133108

50. Liang Y., Cao X., Ding Q., Zhao Y., He Z., Zhong J. Hepatitis C virus NS4B induces the degradation of TRIF to inhibit TLR3-mediated interferon signaling pathway. PLoS Pathog. 2018; 14(5): e1007075. https://doi.org/10.1371/journal.ppat.1007075

51. Kong L., Li S., Huang M., Xiong Y., Zhang Q., Ye L., et al. The roles of endoplasmic reticulum overload response induced by HCV and NS4B protein in human hepatocyte viability and virus replication. PLoS One. 2015; 10(4): e0123190. https://doi.org/10.1371/journal.pone.0123190

52. Hiet M.S., Bauhofer O., Zayas M., Roth H., Tanaka Y., Schirmacher P., et al. Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A. J. Hepatol. 2015; 63(4): 829–37. https://doi.org/10.1016/j.jhep.2015.04.015

53. Sugiyama R., Murayama A., Nitta S., Yamada N., Tasaka-Fujita M., Masaki T., et al. Interferon sensitivity–determining region of hepatitis C virus influences virus production and interferon signaling. Oncotarget. 2018; 9(5): 5627-40. https://doi.org/10.18632/oncotarget.23562

54. Abe T., Kaname Y., Hamamoto I., Tsuda Y., Wen X., Taguwa S., et al. Hepatitis C virus nonstructural protein 5A modulates the Toll-like receptor-MyD88-dependent signaling pathway in macrophage cell lines. J. Virol. 2007; 81(17): 8953–66. https://doi.org/10.1128/JVI.00649-07

55. Chowdhury J.B., Kim H., Ray R., Ray R.B. Hepatitis C virus NS5A protein modulates IRF-7-mediated interferon-β signaling. J. Interferon Cytokine Res. 2014; 34(1): 16–21. https://doi.org/10.1089/jir.2013.0038

56. Kumthip K., Chusri P., Jilg N., Zhao L., Fusco D.N., Zhao H., et al. Hepatitis C virus NS5A disrupts STAT1 phosphorylation and suppresses type I interferon signaling. J. Virol. 2012; 86(16): 8581–91. https://doi.org/10.1128/JVI.00533-12

57. Çevik R.E., Cesarec M., Da A., Filipe S., Licastro D., Mclauchlan J., et al. Hepatitis C virus NS5A targets nucleosome assembly protein NAP1L1 to control the innate cellular response. J Virol. 2017; 91(18): e00880–17. https://doi.org/10.1128/JVI.00880-17

58. Nitta S., Asahina Y., Matsuda M., Yamada N., Sugiyama R., Masaki T., et al. Effects of resistance–associated NS5A mutations in hepatitis C virus on viral production and susceptibility to antiviral reagents. Sci. Rep. 2016; 6: 34652. https://doi.org/10.1038/srep34652

59. Polyak S.J., Khabar K.S., Rezeiq M., Gretch D.R. Elevated levels of interleukin-8 in serum are associated with hepatitis C virus infection and resistance to interferon therapy. J. Virol. 2001; 75(13): 6209–11. https://doi.org/10.1128/JVI.75.13.6209-6211.2001

60. Miyasaka Y., Enomoto N., Kurosaki M., Sakamoto N., Kanazawa N., Kohashi T., et al. Hepatitis C virus nonstructural protein 5A inhibits tumor necrosis factor-a-mediated apoptosis in Huh7 cells. J. Infect. Dis. 2003; 188(10): 1537–44. https://doi.org/10.1086/379253

61. Zhang Q., Wang Y., Zhai N., Song H., Li H., Yang Y., et al. HCV core protein inhibits polarization and activity of both M1 and M2 macrophages through the TLR2 signaling pathway. Sci. Rep. 2016; 6: 36160. https://10.1038/srep36160

62. Dolganiuc A., Chang S., Kodys K., Mandrekar P., Bakis G., Cormier M., et al. Hepatitis C virus (HCV) core protein-induced, monocyte-mediated mechanisms of reduced IFN-alpha and plasmacytoid dendritic cell loss in chronic HCV infection. J. Immunol. 2006; 177(10): 6758–68. https://doi.org/10.4049/jimmunol.177.10.6758

63. Luquin E., Larrea E., Civeira M.P., Prieto J., Aldabe R. HCV structural proteins interfere with interferon-alpha Jak/STAT signalling pathway. Antiviral Res. 2007; 76(2): 194–7. https://doi.org/10.1016/j.antiviral.2007.06.004

64. Stone A.E.L., Mitchell A., Brownell J., Miklin D.J., Golden-Mason L., Polyak S.J., et al. Hepatitis C virus core protein inhibits interferon production by a human plasmacytoid dendritic cell line and dysregulates interferon regulatory factor-7 and Signal Transducer and Activator of Transcription (STAT) 1 protein expression. PLoS One. 2014; 9(5): e95627. https://doi.org/10.1371/journal.pone.0095627

65. Bode J.G., Ludwig S., Ehrhardt C., Albrecht U., Erhardt A., Schaper F., et al. IFN-alpha antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. FASEB J. 2003; 17(3): 488–90. https://doi.org/10.1096/fj.02–0664fje

66. Negash A.A., Olson R.M., Griffin S., Gale M. Modulation of calcium signaling pathway by hepatitis C virus core protein stimulates NLRP3 inflammasome activation. PLoS Pathog. 2019; 15(2): e1007593. https://doi.org/10.1371/journal.ppat.1007593

67. Ivanov A.V., Smirnova O.A., Petrushanko I.Y., Ivanova O.N., Karpenko I.L., Alekseeva E., et al. HCV core protein uses multiple mechanisms to induce oxidative stress in human hepatoma Huh7 cells. Viruses. 2015; 7(6): 2745–70. https://doi.org/10.1371/journal.ppat.1007593

68. Parvaiz F., Manzoor S., Tariq H., Javed F., Fatima K., Qadri I. Hepatitis C virus infection: molecular pathways to insulin resistance. Virol. J. 2011; 8: 474. https://doi.org/10.1186/1743-422X-8-474

69. Cao L., Yu B., Kong D., Cong Q., Yu T., Chen Z., et al. Functional expression and characterization of the envelope glycoprotein E1E2 heterodimer of hepatitis C virus. PLoS Pathog. 2019; 15(5): e1007759. https://doi.org/10.1371/journalppat.1007759

70. Bolcic F., Sede M., Moretti F., Westergaard G., Vazquez M., Laufer N., et al. Analysis of the PKR-eIF2alpha phosphorylation homology domain (PePHD) of hepatitis C virus genotype 1 in HIV-coinfected patients by ultra-deep pyrosequencing and its relationship to responses to pegylated interferon-ribavirin treatment. Arch. Virol. 2012; 157(4):703–11. https://doi.org/10.1007/s00705-012-1230-1

71. Qi H., Chu V., Wu N.C., Chen Z., Truong S., Brar G., et al. Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein. Proc. Natl. Acad. Sci. USA. 2017; 114(8): 2018–23. https://doi.org/10.1073/pnas.1614623114